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The concept of intrinsic shapes

The concept of the "intrinsic shape” of an atomic nucleus refers to
@ the geometric arrangement of nucleons
@ a non-observable feature of the nucleus’ wave function

@ the interpretation of nuclear observables in terms of a classical picture
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Setting the frame |: Symmetries

Noether's first theorem: " Every differentiable symmetry of the action of a physical
system with conservative forces has a corresponding conservation law.”

E. Noether, Nachr. Ges. Wiss. Gottingen, Math. Phys. KI. 1918, 235.

Symmetries of the nuclear Hamiltonian and

@ Translational invariance

Galilean/Lorentz invariance
Time-translational invariance

Rotational invariance

Time-reversal invariance

Space-inversion invariance
o Global gauge invariance

Note: "invariance” does not mean that the nuclear many-body wave function does not
change under such transformation, but that it transforms according to the rules of group
representation theory for the group associated with the respective symmetry
transformation.
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Setting the frame |: Symmetries

Nuclei are isolated self-bound systems (with some Symmetries of the nuclear
Hamiltonian:

@ Translational invariance = momentum conservation

Galilean/Lorentz invariance = only center-of-mass momentum changes when
changing inertial frame

o Time-translational invariance = angular energy conservation

o Rotational invariance = angular-momentum conservation

o Time-reversal invariance (no quantum number associated with anti-linear operators)
@ Space-inversion symmetry = parity conservation

o Global gauge invariance = particle-number conservation

There are quantum numbers of the nuclear many-body state associated with the
conserved quantities.
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Setting the frame |: Symmetries |l

These symmetries have a number of important consequences
o Conserved quantum numbers lead to selection rules for expectation values and
transition matrix elements.
o Symmetries introduce correlations in the nuclear many-body wave function, such
that the nucleons cannot evolve each independently from one another.

@ A useful, but not conserved symmetry is the one under transformation in isospin
space, which leads to approximate isospin quantum numbers (broken mainly by
electromagnetic interactions, and on a much lesser level also by small differences in
the strong interaction between nucleons).
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Setting the frame |l: Relevant phenomenology of nuclei

@ The features of the nucleon-nucleon interactions have as a consequence that nucleons of the
same species tend to couple pairwise to pairs with L =0, S = 0.

o = ground states of even-even nuclei have angular momentum J = 0 and parity
T =41

o = angular momentum and parity of the ground state of an odd-mass nucleus
determined by "unpaired” nucleon, J™ = 1/2i, 3/2:‘:, 5/2i,

e = angular momentum and parity of the ground state of an odd-odd nucleus
ditermined by the coupling of the "unpaired” proton and neutron, J™ = 0%, 1%, 2%,
3

@ From the rules of angular-momentum and parity coupling follows that

o the multipole moments Qum of the ground states of even-even nuclei are all zero for
any £ >0

(07| Qeml0™) =0

o the £ moment of excited states of even-even nuclei, and states of odd- and odd-odd
nuclei can be measured if ¢ is even and J sufficiently large

(J™|Qem|J™)Y #0 if J > £/2 and £ even
o The diagonal matrix elements of all odd-¢ multipole moments is zero

(J™|Qem|J™) =0 if £ odd
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Setting the frame |l: Relevant phenomenology of nuclei

Transition matrix elements of multipole moment operators between states are in general non-zero
@ even parity multipole moments £ = 2n > 2 (quadrupole, hexadecapole, ...)
(7| Qeml J") # 0
@ because the photon has spin 1, there are no electromagnetic EO transitions that lead to ~y
emission
(J%|QoolsF) =0
(but there are EOQ transitions via conversion-electron spectroscopy, for which the transition
operator is r?)
@ odd parity multipole moments £ = 2n+ 1 (dipole, octupole, ...)
(JF1Qum|JE) # 0 if |J; — Jr| > £/2 and £ odd
The reduced E2 transition probability is given by
+J/

B(E2J., — J) = 2J’+1 Z > Z [(IMr|Qop| I MV ?

— I M/ =—J p=—2

i@l [

e?
2J +1
The spectroscopic quadrupole moment is given by

Qs(J) = ,/ Lom (JIv] Qapu JIv)
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Systematics of quadrupole collectivity
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These are "old" plots to avoid overlapping structures visible when plotting all of today's available data

taken from R. Casten, "Nuclear Structure from a Simple Perspective”, Oxford University Press (1990)
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Schematic attribution of an intrinsic

B. Rotational model—The phenomenological Hamiltonian for a system in
which a number of nucleons are coupled to a rotator is written as
»

2=Y 2 Iy = J) 4 Hi V.9,

where 5, J,, and J, are the »th component of the moment of inertia, of the total

angular momentum, and of the intrinsic angular momentum respectively. The

last quantity is a sum of individual nuclons. The last term in Equation V.9 is

the intrinsic Hamiltonian which represents the intrinsic motion, In this section
the rotational motion for axially symmetric shapes is considered:

S=05=3 V.10.
The corresponding wavefunction is given by
e m 4 T
167*(1 + ox,0) Vit

[ Dol O + (=15 Daex1(03) Re(m)x]

where Dux!(0;) is the rotational matrix, K is the third component of the total
angular momentum while x,¢ is the intrinsic wavefunction, and the eigenvalue of
Jy is assumed to be K. The operator (s(r) represents the rotation by « around
the second coordinate axis.
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moment measured in the laboratory

taken from S. Yoshida & L. Zamick, Ann. Rev. Nucl. Sci 22 (1972) 121

Nuclear shapes

multipole moment to a multipole

In general the electromagnetic moment is now written in the rotating coordi-
nate system
IO, 1) = 3 DLAOIIVR, ) Va2,
where STQ\, ») is the moment in the rotational coordinate system. In general the
reduced transition rate is given as

1

BOS LK, = 1K) = o [RAT O T&) |t V.13,
where
(Ko Q)| 7K)
= QL+ V(KK — Ki| LK)(K, | WO Ky — K) | Ko Va4

+ (=YKL — KK+ Ky | LK, | o'\ Ko+ K | K9]
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Schematic phenomenology of quadrupole collectivity

(Spherical) vibrator: Deformed rotor as a function of triaxiality v
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Note: in microscopic models, the spectra might evolve quicker with ~

Note: real nuclei are more complicated, as are spectra predicted by microscopic models

taken from R. Casten, "Nuclear Structure from a Simple Perspective”, Oxford University Press (1990)
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Deformed odd nuclei

@ Another phenomenon that is sensitive to arm——
deformation are the coexisting rotational bands of o s LR
. 152 676 132 6%
odd-mass nuclei. oo
H . H 130251 e e
@ Coupling of single-particle states to a deformed o

rotational core

@ Successful modeling requires internal consistency
of deformed single-particle spectrum, moment of
inertia of rotational motion and electromagnetic
moments of in-band transitions.

@ Similar (but more complicated) for odd-odd nuclei
and single-particle excitations in even-even nuclei.

— (40252

as ]
"\ T le0a 21
Nz o v
nive &G N
:
s —un w2l
"
Fig 113, Schemati iusration ofth two exteme coupling schemes; deformaion o7 ®
ignment l figure) and rotation l.llplmall (nﬁhl fuure) (from RM. Lieder and
ERyde, Ado. in Nuch Phys. s, M. Baranger /o8t (Plenum Publ. Corp., .
N:w York) vol mum)y 1). o o . 02 0.

Fig. 114, For legend see opposite.

taken from S. G. Nilsson & I. Ragnarsson, " Shapes and Shells in Nuclear Structure”, Cambridge University Press (1995).
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Charge density # proton density

o Coupling to electromagnetic fields

e = measures charge distribution # proton
distribution

o because of their substructure, protons and
neutrons have an intrinsic charge distribution
of finite size

o because of electromagnetism being manifestly
Lorentz-covariant, there are relativistic
corrections to the charge density, such as a
contribution from the coupling to the
divergence of the spin current, V - J of
protons and neutrons, a Darwin correction etc
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intrinsic charge distribution of a proton and a neutron
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charge distribution of 208py,

——finite proton density
100x----- finite neutron correction
100x— ~ - spin-orbit correction

Chandra et al, PRC 13 (1976) 245




Another indicator of deformation: systematics of (charge) radii

] <= difference between calculated and experimental
charge radius at four levels of modelling (from
spherical mean field to symmetry-restored
beyond-mean-field with shape fluctuations)

15
10 b
05
00
0.5 F
S10 b
L5 E et

.

L
56 64 72 80 88 06 64 72 80 88 9t
Neutron Number N
2.5 T T T T T T T

o’ (f1112)

A
& exporimen

£
~
&
0.5 o R | R o
—eo
S10F . It ‘, gt o
72 80 88 972 88 96

Neutron Number N

J=0 GCM ground state
L 1 L L

L L L L
0 20 40 60 80 100 120 140 160
Neutron Number N

M. B., G. F. Bertsch and P.-H. Heenen, Phys. Rev. C 69 (2004) 034340
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Beware of coexisting conventions - Experiment

Cartesian vs spherical multipole moments

@ Atomic physicists prefer to work with cartesian multipole tensors or an expansion in
Legendre polynomials, for example

Q = /d3r o(r) (3z2 — r2) = % Q0 (axial quadrupole moment)
T
@ Nuclear spectroscopists prefer to work with spherical tensors, for example

Qo = /d3r p(r) ¥ Yao(r) = 16% Qo (axial quadrupole moment)

Note that there are also other definitions of spherical harmonics that differ in
normalisation and phase convention.

o Dimensionless (charge) multipole moments

4

Blm - 3’72 QZm

where R is usually (but not always!) taken to be R = 1.2 A3 fm
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Beware of coexisting conventions - Theory

Position of the nuclear surface in terms of a multipole expansion

R(W,¢) = Ral{arm}] [1 + > awm Yim(9, 90)] . Q Q Q
M
OO

Assuming incompressible nuclear matter, p = 3A/(47R3), and a sharp surface, the
proportionality constant Ry[{ca n}] is fixed by volume conservation

27 T R(9,¢)
A:/ dcp/ dd sin(19)/ drr?p

%/ d¢/ do sin(®9) [1+ZaLM Yim(®, Lp)]

Multipole moments

27 ™ R(9,¢)
(Qem) = / d<p/ dy sin(ﬂ)/ dr r? pr® Yym(9,¢)
0 0

34 R 043
= RS (43 d@/ dd sin(V) Yem(9, ) [1 + ZQLM Yim(9, <P)}

LM
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Surface deformation vs multipole moments

For a purely quadrupole-deformed surface one has
R(®,¢) = Ral{arm}] [L + 20 Ya0(¥, )]

3, 1 6v5 5\ 3 1, 1 6v5 4
R°(1+Ea2°+(4ﬂ)3/2 21 ) FIT T G ar

520_’13 ooty 22+ 3083 5 /520 .,
RS 4r 7 0 an 7 P T ar Va7

a2z o5 s 5[5 9 4
-0 b7 0 4 7707 47 Vg 2317

Expressions get much more complicated when the surface has also higher-order deformations.

Ry

Note: Experi lists sometimes p their for

Itipols in terms of surface deformation in a model-dependent way.
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Do nuclei have one intrinsic shape?

@ Shape fluctuations: nuclear wave function r
is spread over a large range of deformation g r
. .. >0
@ Shape coexistence: two or several minima ﬁ 1r
yielding states of different deformation in = ; r
the same nucleus 3
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Bender, Bonche, Duguet, Heenen, PRC 69 (2004) 064303
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Do nuclei have one intrinsic shape?

=126

"
0.32(2
(2) (HST 001

+
0.21(1) 0.18 2.
1) o

IN:

E (MeV)

I
210

I I
190 195 200 205
Mass number A

0.5
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radii (Expt), the beyond mean-field calculations with normal [4]
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Building models that use/employ/imply the concept of intrinsic shapes

@ Self-consistent mean-field models (aka Hartree-Fock (HF), HF+BCS,
Hartree-Fock-Bogoliubov (HFB), nuclear density functional theory, single-reference energy
density functional method, ...)

@ Auxiliary product states |®) as fundamental building block < assumption of independent
single-particle (or independent quasiparticle) states

A
loue) = T8kl o louee) =]
k=1

k>0

@ Deformation energy landscapes can be constructed using constraints

@ The experience of 504 years of applications demonstrate that this approach describes many
features of low-energy nuclear structure and some features of low-energy nuclear reactions.

@ Symmetries can be restored with projection techniques |$)

@ Shape fluctuations & shape coexistence can be modeled with configuration mixing (see
some of the previous slides).
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Higher-order deformations (mostly theory predictions)

Proton number
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@ Calculations assuming reflection symmetry
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= For systematics of reflection asymmetric shapes see talk by Luis Robledo
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Higher-order deformations

Scamps, Goriely, Olsen, Bender,

Ryssens, EPJ A 57 (2021) 333
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Coulomb excitation and shape invariants

borrowed from a talk by M. Zielinska

4=210%
~

Idea: excite a nucleus in-flight by the
electromagnetic potentials of another
nucleus.
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The Cline-Flaum sum rule '*'>%) is a model-i and
sum rule and provides an alternative and very useful means for examining the correla-
tions among *he E2 data. In analogy to the Bohr parameters (. ), the E2 operators
in the intrinsic frame are parameterized with (Q,5) under this sum rule.

Erar = \/;Qsimi.

The zero-coupled products of the E2 operators can be expressed in terms of Q and 5,
€8,

Eyp = Qcosé, Ers =0, @)

o
E2xE2l = 300 (BB 2 = i ensn). (5)
The expectation values of matrix elements for these rotationally invariant zero-coupled
products for a given state s can be evaluated using an intermediate state expansion,
eg,

SiE2 < B2/ = WZNEZI'K‘"”"”{: o } ©

22J
{ LI I‘} :
is the Wigner 6 symbol. Thus the expectation values of (Q,d) for a state are deter-
mined from a set of E2 matrix elements according to eq. (6) and the like. There are
different ways 1o evaluate (Q,4) for coupling of four or more E2 operators because of
various intermediate couplings. The agreement among them can serve as a measure of
convergence in various summations.

January 2022

2/2



Morrisson et al, PRC 102 (2020) 054304
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Subjects not covered here:
@ Reflection-asymmetric shapes = talk by L. Robledo
@ Rigorous connection between intrinsic states and laboratory observables = talk by B. Bally
@ Data for higher-order multipole moments (there are only very few)
@ Fission
@ Deformation effects in low-energy nuclear reaction with strongly-interacting probes
°

Fine structure of rotational bands and vibrational states

Neutron distributions from strongly- and weakly-interacting probes

Intrinsic shapes are non-observable for direct measurements, but they leave their fingerprint on
virtually all nuclear observables and phenomena

@ Structure of excitation spectrum in a given nucleus
@ Evolution of excitation spectra

@ " Collectivity”: rotational and vibrational structures in the excitation spectra, shape
coexistence, ...

@ Evolution of charge radii
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